UNIX REVIEW

THE PUBLICATION FOR THE UNIX COMMUNITY VOLUME 6 NUMBER 1 $3.95

D ENVIRONMENTS

S - Let Us Count the Ways
, . . o

TR ]
ﬁ'

o

iy
0}
B
4

Ut Differences

Working

e

. 0 The Great Pretenders

 AT&T AND SUN
- SNUGGLE UP




Astonishment. Any computing en-
vironment that presents UNIX
interfaces as a subset of some
larger system needs to preserve as
many of the original product’s
features as possible. In this con-
text, of course, the exact definition
of original product and features is
problematic, but it is nonetheless
safe to assume that no UNIX
implementation will succeed un-
less it affords portability of pro-
grams and users, and unless it
performs at least as well as a na-
tive kernel running on comparable
hardware (especially when execut-
ing often-used primitives such as
stat and fork).

Program portability is probably
the easiest of these objectives to
achieve, since most well-written
UNIX programs require only that
the operating system provide in-
terfaces that have the correct
semantics, and that the file system
bear at least a vague resemblance
to the typical UNIX file system
(it’s pretty hard to live without
/usr/tmp). Even the less notable
examples of good programming
practice can usually be tricked into
running in a non-native environ-
ment through the emulation of
implementation-specific bugs and
other undocumented features. But
users—especially programmers and
system administrators—are more
sensitive. They come to your sys-
tem with a variety of expectations
and, of course, prejudices. Most
users are not especially comforted
by the idea that your version of
UNIX adheres to the letter of an
interface specification unless it
also has the look and feel they're
used to.

UNIX has always been charac-
terized by a high degree of concep-
tual integrity, probably because it
was developed and shepherded
through its early years by a small
group of like-minded individuals
[3,4]. A system that has conceptual
integrity is one in which funda-
mental concepts are manifested in
similar ways at all levels. In such a
system, anyone who has mastered
the syntax of a few commands or
system calls will find that the same
rules apply, more or less, across the
board. As a result, it is soon easy to
infer the behavior of something
you’ve never tried from the behav-
ior of something you have tried,
and the whole business of using the

56 UNIX REVIEW

system becomes an order of magni-
tude easier.

Successfully extending a system
that is lucky enough to have
conceptual integrity requires that
all extensions be tested against
what has been called the Law of
Least Astonishment. In this con-
text, that means the behavior of
additions to a system must be
consistent with behavior patterns
the system’s users have come to
expect from it. Extensions to
UNIX that violate this law are less
likely to be successful than those
that don’t.

wing with history. In 1979,

there was a fair amount of

debate among the architects
of Apollo’s kernel over whether it
made sense to try to fit the features
they wanted into the (Version 7)
UNIXes available at the time, or
whether they should just start over
from scratch. And while the deci-
sion then was to start from scratch,
the system that resulted bore at
least a surface resemblance to
UNIX, supporting a similar file
system, stream I/O interface, and
process abstraction. It also includ-
ed the UNIX-like Software Tools
shell and command set. But be-
neath it all was a new network-
based kernel (written mostly in
Pascal) [5] that supported fea-
tures, such as large virtual address
spaces and a large-scale distribut-
ed file system, that are only now
becoming available on more tradi-
tional UNIX kernels. Initially,
these features proved valuable
enough to stand on their own,
attracting third-party application
developers for whom UNIX was
not, at the time, an issue. Within a
few years, however, the success of
UNIX as a development and run-
time environment for workstation
software put increasing pressure
on Apollo to find a way of letting
UNIX programs run on Apollo
systems. While Apollo’s UNIX-
like features may have given some
comfort to UNIX users migrating
to Apollo, they were no help to
UNIX programs.

Early attempts to implement a
hybrid 3BSD/System III UNIX
solely in global libraries [6] en-
joyed enough success to allow the
porting of several hundred UNIX
applications to Apollo systems.
Subsequent revisions of the system

Not Just a

Poor Man's
UNIX

Providing a common UNIX-style

interface across computing

environments has made both users

and programs portable.

BYD. SCHERRER

E arly in 1976, before UNIX was
available outside the university
environment, Brian Kernighan and
P.J. Plauger published an
unassuming little book, Software
Tools, in which they described the
simplicity and elegance of the UNIX
world view through example. Theirs
was yet another experiment at
bringing the UNIX environment into
peaceful coexistence with a host
system, and the examples they
chose were portable
implementations of some of the
basic UNIX utilities. In effect, their
book offered readers the means,
using the UNIX model, to improve
their computing environment even if
all they had to work with was a
hardware dinosaur running a
minimally functional operating
system.

Networked Compulting.
Researchers at Lawrence Berkeley
Laboratory (LBL) quickly picked up
on this opportunity to attempt to
solve an immediate problem: how to
make effective use of the dozens of
operating system environments
rapidly becoming accessible with the
emergence of computing networks?
By extending the abstractions and
the tool set offered by Kernighan
and Plauger, LBL's researchers were
able to develop, in portable
(and unlicensed) form, a UNIX
interface that could be implemented




on top of virtually any operating
system™*.

Because the researchers did not
have the luxury of insisting that each
piece of hardware on a given
network run the same operating
system, they designed their
Software Tools Virtual Operating
System (VOS) to provide both
programming and user-level
interfaces to the local system,
however unusual or arcane. The
package included a shell, 60 or
so of the favorite UNIX utilities,
and an extensive programming
library.

To make the package portable,
the researchers defined a VOS
interface expected by the Tools
source code. This interface included
such operating system capabilities
as file access, process control,
directory manipulation, and
command line argument handling,
and needed to be implemented for
each host operating system.
Sometimes the mappings were
straightforward; at other times they
were complex. However, once the
VOS layer was implemented, the
source code for the Tools
themselves compiled and ran
essentially unchanged.

Guaranteeing Portability.
Obtaining this amazing level of
portability was, of course, the trick.
The abstractions offered by
Kernighan and Plauger were a
starting point. But as more and more
groups began to move the Tools to
all manner of new systems, the real
limits of portability were discovered.
At that point, the VOS community
came together, pooled its
knowledge, energy, and experience,
and eventually was able to specify a
carefully chosen abstraction for the
VOS interface. The interface was
effective enough to allow the
package to be implemented on
more than 50 different operating
systems.

Two “‘prime directives” guided
the choice of the VOS interface:

* Hall, Scherrer, and Sventek, “'A Virtual
Operating System"', Communications of the ACM,
Vol. 23, No. 9 (Sept. 1880).

e [t could require no changes in the
underlying operating system. This
was an administrative necessity, if
nothing else.

e The VOS tool set and library had to
work cooperatively and in
conjunction with the local system.
Tools had to transparently support
local file types and the local
character set, although all visible
VOS file and |/0 handling was to
be based on the UNIX model and
the ASCII character set. Magic,
newly-devised file types were to be
avoided. The VOS shell had to be
able at least to execute local
utilities (if not always be able to
use them in pipelines) .

The Software Tools VOS Project

grew out of a recognition of the

need to provide for multiple

operating system environments

without sacrificing the advantages

of a consistent and well-known

interface. In the process, much was

learned from analyzing what UNIX

did well and what it did badly.
[SRRRe SR o K T

While these requirements greatly
increased the challenge faced by the
VOS implementors, the result was a
carefully chosen VOS interface layer
and a user interface which effectively
complemented, and cooperated
with, the local system.

Portable Users. The VOS project
addressed portability, then, from two
directions. The original goal, at least
as envisioned at LBL, had been to
provide a cornmon UNIX-style
interface across computing
environments, which would minimize
the need to reimplement programs
and retrain users—thus making

people and programs portable, if you
will. The method used to achieve this
goal involved developing a UNIX-like
package that would be readily
portable to any operating
environment.

At the time, unfortunately, neither
the concept of portability nor the
desire for a UNIX-like interface was
enthusiastically embraced by
manufacturers, who were busy
basing their sales campaigns on their
ability to provide something different
and, therefore, potentially "better”.
Software portability and—to an even
greater extent—human portability
were viewed by those trying to sell
systems as an annoyance at best.
Only recently have such concepts as
software portability and the
desirability of providing a consistent
interface become recognized
as socially and economically
valuable.

Poor Man's UNIX? The Software
Tools VOS Project was one of the
first attempts to provide a hybridized
UNIX/local-host interface. To this
day, many people think it was little
more than attempt to build a *‘poor
man’s UNIX"', or to provide a
substitute for the real thing. Though
it certainly played that role for many,
the VOS project offered much more.
It grew out of a recognition of the
need to provide for multiple
operating system environments
without sacrificing the advantages of
a consistent and well-known
interface. The VOS flavor of UNIX
was designed to cooperate with and
complement the host environment,
and not as a mutually-exclusive
alternative. In addition, the Software
Tools people learned many lessons
from analyzing what UNIX did well
and what it did badly, and in the
process wrote many new chapters
on portability, defensive
programming, software design, even
software management. e

Deborah Scherrer is a computer
scientist at mt Xinu. She previously
did research at Lawrence Berkeley
Laboratories, where she helped to
found the Software Tools movement.

JANUARY 1988 57






