
@ Bell Laboratories Cover Sheet for Technical Memorandum
The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEi 13. 9-3)

Title: File System Structures for Real-Time Applications

Other Keywords: Time Sharing
UNIX
MERT
Asynchronous 1/0

Date: April 20,1978

TM: 78-3114-5

~-

\.

Author(s)
· H. Lycklama

Location
HO lG-317

Extension
3212

Charging Case: 39394
Filing Case: 39394-11

i.

ABSTRACT

* File system structures have been designed for various versions of the UNIX and MERT
operating systems over the past few years. Each structure was designed to be efficient in a
particular enviror.rnent, i.e. the nature of the application dictated the design.

The structure of the MERT operating system enables one to write a new file manager
process with minimum impact on other parts of the system. Only the file system utility
commands need to be rewritten to deal with different file system structures. The original file
manager written for the MERT system made use of extents to allocate contiguous space to
files. This makes these files optimal for real-time applications. For time-sharing applica­
tions, a file structure like the original 16-bit UNIX file structure is more appropriate.

Recently a new version of the file system structure was done for Version 7 UNIX using a
32-bit byte offset pointer to achieve very large files and file systems. Subsequent to this a
new 32-bit file system was designed and built for the MERT system. The new file system
structure has characteristics which make it efficient for both time-sharing and real-time appli­
cations. This paper describes the salient features and shortcomings of each of the four file
system structures.

* UNIX is a Trademark of Bell Laboratories

Pages Text: 8

No. Figures: 0

Other: 15

No. Tables: 0

Total: 23

No. Refs.: 6

E-1932-U (3- 76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

@
Bell Laboratories

subject: File System Structures for Real-Time Applications
Case: 39394
File: 39394-11

date: April 20,1978

from: H. Lycklama
H03114
lG-317 x3212

TM: 78-3114-5

\.
ABSTRACT

* File system structures have been designed for various versions of the UNIX and MERT
operating systems over the past few years. Each structure was designed to be efficient in a
particular environment, i.e. the nature of the application dictated the design.

The structure of the MERT operating system enables one to write a new file manager
process with minimum impact on other parts of the system. Only the file system utility
commands need to be rewritten to deal with different file system structures. The original file
manager written for the MERT system made use of extents to allocate contiguous space to
files. This makes these files optimal for real-time applications. For time-sharing applica­
tions, a file structure like the original 16-bit UNIX file structure is more appropriate.

Recently a new version of the file system structure was done for Version 7 UNIX using a
32-bit byte offset pointer to achieve very large files and file systems. Subsequent to this a
new 32-bit file system was designed and built for the MERT system. The new file system
structure has characteristics which make it efficient for both time-sharing and real-time appli­
cations. This paper describes the salient features and shortcomings of each of the four file
system structures.

MEMORANDUM FOR FILE

I. Introduction

A file system provides the user with an interface to data on secondary storage as well as the struc­
tures necessary to map an offset into a file to a disk address. The structure of a file system has enor­
mous impact on the efficiency of I/0 transfers to/from a file and therefore on the applications which
run on the system. The crucial aspects of a file structure are determined by the file map and the mode
of maintaining free block lists.

There are basically three ways of defining a file map:

• linked list of blocks

• indexed list of blocks

• extents of blocks

• UNIX is a Trademark of Bell Laboratories.

- 2 -

A linked list of blocks uses one word in each block to point to the next block in the file. This file
structure is suitable for sequential access to a file in the forward direction but it is not suitable for ran­
dom 1/0. The indexed structure makes use of a list of block pointers to point to the blocks which
make up the file. If the list of blocks is greater than a fixed number, an indirect block of block pointers
is used. This file system structure permits both sequential and random I/0 transfers. However random
I/0 may require at least two disk accesses to access an arbitrary block in the file. The use of extents to
define the blocks in a file enables the allocation of contiguous files with the added advantage of random
1/0 with only one disk access. An extent is a two-element structure in which the first element indicates
the starting block number and the second element indicates the number of consecutive blocks. These
features are often requirements for real-time systems.

The means of maintaining free block lists is another crucial aspect of a file system design. There are
four basic strategies for doing this:

• maintain bit map in memory

• maintain bit map on disk

• use linked list of free blocks

• use list of free extents.

A bit map requires one bit of storage per allocatable block. A bit set to one indicates a free block. The
use of a bit map in core is useful and only practical for small file systems. This allows the allocation of
a block or the freeing of a block without a disk access. For larger file systems, it is necessary to main­
tain the bit map itself on disk. Parts of the bit map may be cached in memory. For the random dele­
tion of single blocks from a file, a disk access is required to update the bit map. Thus this is not a good
strategy for maintaining free block lists for time-sharing systems. The use of a linked list of free blocks
can be used for a time-sharing system by keeping a cache of free blocks in core. When the in-core list
is exhausted, a disk access is required to get a new cache of free blocks. When the in-core list is filled,
one disk access is required to empty the list. For real-time systems, it is more efficient to maintain a
list of free extents in memory. This requires no extra disk accesses for the allocation or de-allocation
of blocks and also ensures the ability to allocate a number of consecutive blocks.

i.

This memorandum describes various file structures which have been designed and built for the
MERT real-time system. For the sake of completeness, the salient features and shortcomings of each
of the four file system sructures which have been implemented on the UNIX and MERT systems are
described. The contents of the superblock, of the on-disk inode and of the in-core inode are described
for each file system. The map of a file (inode) and the technique for maintaining free blocks are dis­
cussed in detail. Two of the file systems have been implemented on the UNIX system, whereas three
of the file systems have been implemented on the MERT system. The C structures used for the super­
block, the on-disk inode and the in-core inode are listed in Appendices A-L. For the MERT file sys­
tems, in odes on disk are often referred to as vtoc entries (volume table of contents).

This memorandum gives only an overview of the characteristics of each one of these file systems
and does not give derailed usage or timing statistics. The reader is assumed to be familiar with the
UNIX time-sharing system [l] and the basic structure of the original UNIX 16-bit file system [2]. The
MERT system is described in a previous memorandum [3].

2. Directory Structure

The overall directory structure of the file systems is described first as this is identical for all four file
, ·~ systems. The file system naming convention is completely hierarchical. A file system has a root inode

which describes a directory. In fact a directory is a special type of file which contains the names and
inode pointers of other files and directories. A directory entry is a 16-byte entry consisting of a two
byte inode number and up to fourteen characters specifying the name of the file. The root inode is
referred to by "/". A directory "usr " in the root directory is referred to as "/usr". A directory "bin"
in "/usr" is referred to as "Zusr/bin" and so on. Directories may go to an arbitrary level. Further
details of the directory structure may be found in a previous memorandum [2].

- 3 -

3. File System Layout

A file system consists of a number of contiguous 512-byte blocks. The first block of a file system
(block 0) is reserved for a boot program. Block 1 is called the "superblock", The next N blocks are
reserved for the "inodes" or the control blocks for all files in the file system. The number of inodes in
a block depends on the size of one inode. It is different for each file system discussed. If an inode is
32 bytes in size, there are 16 inodes per block and thus 16N inodes in total. Thus a total of 16N files
may be maintained on this particular file system. For UNIX file systems, the remainder of the blocks
in a file system are reserved for data blocks in files, directories and free lists. For MER T file systems, a
number of blocks beyond the inode blocks are used for maintaining bit maps which describe an up-to­
date free block list.

The superblock contains a roadmap of how to access the rest of the file system. For each type of
file system, it contains at least the size of the ilist (list of inodes) in blocks and the size of the total file
system in blocks. It also contains a list of free inodes available for the creation of a new file. For
UNIX file systems, the superblock contains a list of free blocks. For the MERT 16-bit file system, the
superblock contains a list of free extents. The superblock also contains a number of other miscellane­
ous items. These are different for each file system type.

The various file systems are now described in further detail in the order in which they were histori­
cally developed. They were all initially developed for PDP-11 computers for the various disk storage
devices available at the time. ·

4. UNIX 16-Bit File System

The file structure developed for the original UNIX system written in the C language for the PDP-
11/45 computer was designed to handle file systems for 16-bit mini-computers and disk storage devices
with1i limited number of disk blocks per device. A block number is an unsigned 16-bit value. Thus up
to 2 , i.e. 65536 blocks may be addressed in one file system. The free blocks in the file system are
put on a free chain of blocks with each block holding a list of 100 free blocks. The order of blocks on
the free list may be optimized to minimize disk latency when reading blocks from a file. The free list is
self-consuming as it is used up. All of the items in the superblock structure are appropriately com­
mented in Appendix A. Up to a hundred free blocks are maintained in the in-core superblock. The
actual number is given by s_nfree. The items at the end of the superblock were added subsequent to
the design of the original UNIX file system. The total number of free blocks on the file system s_tfree
and the total number of free inodes on the file system s_tinode are maintained and are used by special
user-level software to determine whether a complete file can be written before an attempt is made to
write a file and to keep track of the total disk blocks free at any one time.

The inode structure on disk is given in Appendix B. It is 32 bytes in length. Here the inode is
referred to as a vtoc, volume table of content entry, this being the MERT system naming convention.
Each item in the inode is named with a leading 'v' rather than with a leading 'i' to avoid confusion with
the in-core inode structure names. Note that a character is devoted to each of the items, user id, group
id and the file link count. The size of the file is described by 24 bits, Block numbers are specified by
v_addrf;} where a small file is less than eight blocks long and a large file uses these as pointers to blocks
containing block numbers. This gives a maximum file size of 8*256"'512, i.e. lM bytes. A variation of
this has been implemented to achieve "huge" files. This uses v_addr{7] to point to an indirect block
which in turn points to 256 double indirect blocks. This allows the addressing of more than 32M bytes.
However, the 24-bit size field in the inode limits the largest file to 16M bytes. Thus huge files may
require up to three disk accesses to retrieve a random block number in a file.

The in-core inode structure is included for completeness in Appendix C. The structure is almost
identical to the on-disk structure with additional bookkeeping parameters. The i_count item is main­
tained to keep track of the number of opens. The final close causes the inode to be written back to
disk.

S. MERT 16-Bit File System

The original MERT file system was designed to be efficient for real-time applications. However, the
file system had· to be suitable for time-sharing applications as well. Time-sharing applications require

- 4 -

that files be both dynamically allocatable and growable. Real-time applications often require that files
be large and possibly contiguous; dynamic allocation and growth are usually not required. Contiguous
files are efficiently described by a file map entry which consists of starting block number and number of
consecutive blocks (a two-word extent). All files are allocated by extents. Files can grow or shrink in
size by adding/growing extents or deleting/truncating extents, respectively. A file can have up to 27
extents.

The list of free blocks is kept in the superblock as a list (see Appendix D) of the 64 largest extents
of contiguous free blocks. Blocks for files are allocated and freed from this list using an algorithm
which minimizes file system fragmentation. When allocating blocks to a file, a fixed number of blocks
(set at system generation time) is found in the free list from an entry which best matches the required
number of blocks. When freeing blocks, the blocks are merged into an existing entry in the free list if
possible, otherwise placed in an unused entry in the free list or, failing this, they replace an entry in the
free list which contains a smaller number of free blocks.

Entries which are being freed or allocated are also added to an update list in the in-core superblock
in s_updateU. When this update list becomes full (N_UPDATE entries), further modifications to the
superblock are temporarily blocked while these update entries are used to update a bit map which
resides on secondary storage at the end of the ilist. The number of blocks reserved for this bit map is
sufficient to contain one bit for each block in the file system, sfsize. If the in-core free list in the
superblock should become exhausted, the bit map is consulted to recreate the 64 largest entries of con­
tiguous free blocks. The nature of the file system and the techniques used to reduce file system frag­
mentation ensure that this is a very rare occurrence.

The inode (or vtoc) structure as stored on disk is given in Appendix E. Each inode is 128 bytes
long. This allows only 4 inodes per block. There are a number of differences between the UNIX 16-bit
file system inode and the MERT 16-bit file system inode. An invocation count, v_invoc, is maintained
in the inode to determine the uniqueness of the file. This value is incremented when the inode is de­
allocated. Two comp}ite words, i.e. 32 bits, are used to specify the size of a file. The maximum file
size is actually 512*2 , i.e. 32M bytes. A file may actually consist of up to 27 extents of contiguous
blocks. A different file type is described by the ICONT mode bit. This is used in place of the ILARG
bit in the UNIX l S-bit file system inode. If the ICONT bit is set, only one extent may be used to
describe the file map. This guarantees that once the file is open, any part of the file may be read in one
disk access. The contiguous file must be created with a given number of consecutive blocks. These
blocks are not given back to the free list until the file is deleted even though only a fraction of the
blocks are written into.

The in-core inode structure for the MERT 16-bit file system is shown in Appendix F. Because of
size restrictions, the complete on-disk inode is not stored in core. Only one extent is kept in the in­
core inode, providing a window into the file. The relative block number of the first block in this extent
is given by i_stblk and the extent number in core is given by iextno. A block within this extent can be
accessed in one disk transfer. Blocks not included in this extent require two disk I/O's to access. The
last extent used remains in core, thus acting as a cache entry. For real-time applications where more
than one disk access to access a random block or number of blocks cannot be tolerated, the file may be
moved into a contiguous area of disk and thus be defined by one extent.

When a non-contiguous file is closed, unused blocks at the end of the file, beyond the size of the
file, are returned to the free list. Contiguous files use only one extent. The blocks described by this
extent are only freed when the last link to the file is removed even though the size of the file as
specified by i size is Jess than indicated by the number of blocks allocated.

Very active file systems consisting of many small time-sharing files may be compacted periodically
by a utility program to minimize file system fragmentation still further. File system storage fragmenta­
tion actually only becomes a problem when a file is unable to grow dynamically, having used up all 27
extents in its file map entry. Normal time-sharing files do not approach this condition. Fragmentation
becomes a problem when the in-core free list of extents becomes sparse, with each free extent only
representing a few contiguous free blocks. When the in-core list of extents is exhausted, it is replen­
ished from the up-to-date bit map on disk.

- 5 -

6. UNIX 32-Bit File System

With the advent of larger disks and requirements for larger data bases, it became cumbersome to
deal with tge multiple file systems which are required on one disk since a 16-bit block number can only
address 21 blocks. A 160M byte disk with 320K blocks would require five file systems to address the
complete disk. To treat this disk as one file system requires more bits in the block number. A recent
effort at porting the UNIX system to a 32-bit machine also required a new approach to the UNIX 16-bit
file system structure. Thus a new 32-bit file system was designed for Version 7 UNIX [4]. This file
system is described briefly here since the new MERT 32-bit file system is based on it.

The new format UNIX file system is referred to as a 32-bit file system since a two-word (16 bits
each) data type is used to provide a byte o!1ft into a file. Actually block numbers are only 24 bits
long. Thus a file system may contain up to 2 , i.e. 16M blocks or 8B bytes of data. However the 32-
bit size word in the inode, discussed later, limits file size to 4B bytes. The superblock for this file sys­
tem shown in Appendix G, bears a strong resemblance to the superblock for the 16-bit UNIX file sys­
tem. The main difference is that 32 bits are used to store block numbers rather than 16 bits. The total
number of free blocks in the file system is also stored as a 32-bit data type. The total .number of free
blocks kept in core is only 50. The free blocks are still maintained in a linked list, with each block
holding 50 free blocks.

The inode structure maintained on disk is shown in Appendix H. Each inode is 64 bytes long, twice
as long as the original UNIX 16-bit file system inode. This allows 8 inodes per block. The sizes of
most of the it1ws in the structure have changed. Note that the possible number of links in di_nlink has
increased to 2 -1. The group and user id's are now represented by a 16-bit word. The size of a file is
now represented by 32 bits. There is no longer any distinction made between small and large file types.
The array di_addr[40] contains 13 24-bit block numbers. The first 10 of these are the first 10 block
numbers in the file. The eleventh entry is a pointer to a block of 128 indirect pointers, the twelfth a
pointer to a block of double-indirect pointers and the thir~1enth a pointer to a block of triple-indirect pointers. Thus a file may contain somewhat more than 2 blocks, i.e. 2M blocks or 1 billion bytes.
To access a random block in an enormous file (with triple-indirect pointers) may require up to four disk
accesses.

The in-core inode structure is shown in Appendix I. The difference between the structure stored in
memory compared to the on-disk structure is that the block numbers have been unpacked from 24 bits
to 32-bit values to make it easier to obtain a block number in the structure. The last logical block read
is also maintained in the in-core inode structure for the implementation of read-ahead. This makes the
size of the in-core inode much larger than that required for the UNIX 16-bit file system. One inode
occupies 74 bytes of memory. This is expensive for systems with a large number of open files and a
limited system address space. Note that the file type is now encoded in 3 bits of the inode field to
allow for more different file types. There is no longer an allocated bit. An unallocated inode has a
value of O for this field.

The new 32-bit file system structure served the purpose of providing a general file system suitable
for 16-bit as well as 32-bit mini-computers. Maintaining 10 blocks in the inode compared to 8 blocks in
the 16-bit file system structure for small files is an improvement. In the new file format, each of the
first 10 blocks can always be retrieved with one disk access. There is no modification required to the
inode to grow a small file into a large file. This file system structure served as the base for building the
new 32-bit file system for the MERT system.

7. MERT 32-Bit File System

The advent of new and larger disks and the prospect of portability of the MERT system to 32-bit
machines required the redesign of the original MERT file system to a suitable structure just as for the
UNIX system. Experience with the MERT 16-bit file system structure demonstrated that the need for
a development environment as well as a running environment for real-time applications was an impor­
tant consideration in designing a file system. There are applications where an off-line compaction of a
file system is not feasible. The number of applications which require true contiguous files is not great.

• Changes have been proposed to the file types by G. W.R. Luderer to make the new MERT file system types compatible with
the new UNIX file system types. This requires 4 bits for the file type mask.

- 6 -

Thus a new file system was designed to make it more suitable for small time-sharing files and yet allow
for the allocation of large contiguous files. Compaction of such a file system is not required.

The superblock for the MERT 32-bit file system as shown in Appendix J bears a strong resemblance
to that of the UNIX 32-bit file system superblock. The structure items with similar names serve the·
same purpose as those in the corresponding UNIX file system superblock. The maintenance of the
block free list is handled in a different fashion from that in the corresponding UNIX file system. A bit
map for all blocks in the file system is maintained on disk beyond the ilist. A linked list of free blocks
is generated from this bit map in a dynamic fashion. At the time of creation of the file system,
NHW AT blocks are put on the linked free list with the interleave factor specified by s_m in multiples of
s_n. The interleave factor is determined to minimize disk latency when accessing blocks in a new file in
a sequential manner. The order on the free list determines the order in which blocks are allocated to a
new file. For regular files, blocks are allocated from the linked list of free blocks. When this list is
exhausted, new blocks are added to the chain dynamically from the bit map starting at s_nxtblk in an
interleaved fash.on. This value is updated when the blocks are allocated or de-allocated from the bit
map. The total number of free blocks on the chain is maintained in s_cfree at all times, _ As blocks are
freed from files, they are added to the free chain but not marked free in the bit map.

Contiguous files are supported in a different manner in this file system structure. Blocks for con­
tiguous files are allocated directly from the bit map. To avoid a linear search from the beginning of the
bit map each time rpace is required, a pointer s_nxtcon is maintained, pointing to the last block number
allocated to a contiguous file. Thus to allocate blocks to a contiguous file, the appropriate bit maps
must first be read into memory. This is an expensive operation (in terms of disk I/O's) but does not
have to be performed very frequently and certainly not in the critical path of a real-time task if use is
made of pre-allocated contiguous files. The pointer s_nxtcon is updated each time blocks are allocated
to or freed from a contiguous file. The block pointers, s_nxtblk and s_nxtcon are initialized by either the
mkfs program or the «heck program.

The on-disk inode structure for a file in the MERT 32-bit file system is identical to that for the
UNIX 32-bit file system (see Appendix K). It occupies 64 bytes, allowing 8 inodes per block. For reg­
ular files, the 13 addresses of 24 bits each in the di_addr[40} array are used for the same purpose as the
corresponding UNIX file system structure. For contiguous files and those files whose blocks are allo­
cated by extents, only 12 24-bit numbers are stored. These correspond to 6 extents, where each extent
is a ~tarting block nu~be2lnd a num~~ of conti~uo~s blocks. The maximum file w_hich ca~ be
described by an extent 1s 2 blocks or 2 f2tes, which 1s larger than can be represented m the di size
data field. Thus the maximum file size is 2 bytes, i.e. 4 billion bytes. This is larger than any secon­
dary storage device currently available. The unused byte di_adclr[39} is used as the invocation count
value in the MERT 32-bit file system in the same manner as the MERT 16-bit file system uses such an
item.

The in-core inode structure given in Appendix L is similar to the in-core inode structure used by
the corresponding UNIX file system. Two extra items are added to the structure. The i invoc field is
used to determine the uniqueness of the file. It is incremented when the file is deleted. The i use field
is used to determine the uniqueness of the in-core inode. When the i count value goes to 0, i use is

• incremented so that· when this ·inode entry is reclaimed, the key to access the inode has been changed
for security. Again the 13 addresses (24-bit) in the on-disk inode are unpacked to 13 32-bit addresses.

T:1e file type field is 4 bits wide in the new MERT file system. Note that the mode bits indicate two
"types" of contiguous files. When the file is of type IFEXT, blocks are allocated to the file by extents
directly from the bit map. Up to six extents may be allocated. If the file is of type IFIXT, only one
extent may be allocated to the file to ensure that it is a completely contiguous file.

8. Implementation of MERT File Systems

The file system is controlled completely by a file manager process. The file manager is a kernel
mode process with I and D space separated to obtain enough virtual address space. Making the file
manager a separate process eases the communication of other processes with the file manager. The file
manager is the only process with knowledge of the detailed structure of the file system. The UNIX sys­
tem supervisor in the MERT system has no need to deal with the file system structure. An RSX-11D
supervisor process has been brought up to run on the MERT system to demonstrate the functional

- 7 -

separation of the independent processes. All supervisor processes communicate with the file manager
process by means of messages. To prevent corruption of the file system, all incoming messages must
be carefully validated. Each message includes a capability which is checked by the file manager process.

Internally the file manager is organized as a multi-tasking system, with each task handling one·
incoming message. This increases the total throughput of the file manager process. The task is created
upon receiving a new message and destroyed when the final acknowledgement message is sent back to
the sender. The tasks operate on a common data base and are not individually preemptible. Each task
has a private data area as well as a common data area.

The file manager recognizes 25 different types of messages. Requests for reads or writes from/to a
file must specify a starting block number and the number of bytes to transfer. If the request spans a
number of file extents, the file manager process breaks the transfer up into a number of consecutive
transfers. This feature is taken advantage of by the 'exec' system call in the MERT/UNIX supervisor.
It is possible to transfer the complete executable file image into a segment with one 1/0 transfer,
excluding the header block.

_
Two file system primitives have been added to the MERT file manager process to deal with contigu­

ous files. These are reflected as MERT/UNIX system calls [5] as well as UNIX system user commands.
The falloc primitive is provided to allocate space for a contiguous file. The size of the file to be created
is given in bytes. The blocks allocated are not put back on the free list until the file is deleted. The
second one provided is the fmove primitive. This is useful for combining all of the extents of a file
(allocated by extents 'nitially) into one extent. The file is not marked contiguous; thus it may be
expanded dynamically at some later time. Further details on these and other file manager primitives
are discussed in section C of the MERT Programmer's Manual [61.

9. Summary

Currently three different file system structures have been implemented for the MERT system. The
details of the file system structure are controlled by the file manager process. No changes are required
in any supervisor or kernel device driver processes. A_ number of file system utility programs have
been added to the standard UNIX file system utility programs. A number of these deal with the file
system inodes. One program was written specifically for the MERT 16-bit file system to minimize file
system fragmentation. When a file system becomes congested, it must be unmounted and reconfigured
by moving all files into contiguous areas, freeing up large numbers of contiguous free blocks. On a file
system which is normally about one-half full, running the recon program is only required once a week
or so. The equivalent of all of the standard UNIX file system utility programs have been written for
the MERT file systems. In particular, the dump and restor programs have been generalized to make it
easy to dump any file system format and restore it from tape onto a different file system format.

The original MERT 16-bit file system has received heavy usage in many different installations. It
serves the purpose for which it was designed. The UNIX 16-bit file system has been used in the
MERT system to enable the running of either the UNIX time-sharing system or the MERT real-time
system on the same disk pack. The new MERT 32-bit file system was recently installed by W. A. Bur-

- nette on a running system and is essentially debugged at this time. It will be an easy matter to make
this file system completely compatible with the UNIX 32-bit file system provided no contiguous files
exist in the file system. The inodes are the same size (64 bytes) on both systems and the superblocks
differ only in a few fields. Comparability can be achieved by allocating a dummy file in the UNIX file
system to include the bit map which is used by the MER T file system.

The MERT file system can make a significant improvement in the execution of program files by
making the files contiguous using the fmove primitive (especially in the /bin and /usr/bin directories).
Some potential problems still exist in the new file system. The larger size inode in memory means that
fewer inodes can be stored in memory. The allocation strategy for blocks for time-sharing files means
that the free list could be exhausted. When free blocks are returned, they are put on the free chain,
not back in the bit map where they can be used for allocation to contiguous files. These blocks can
only be reclaimed by a check -s salvage operation. This strategy does not provide for a free exchange
between contiguous space and space described by the free chain.

- 8 -

The MERT 32-bit file system is not very flexible for dealing with files which are allocated by
extents. Only 6 extents are available leading to a potential file growing problem. However all 6 extents
are in memory when the file is open; thus only one disk access is required to read an arbitrary block,
even if the file is allocated in pieces. This was not true for the MERT 16-bit file system. It is felt that
a reasonable trade-off was made to make the file system more suitable for time-sharing applications and
yet provide real-time capabilities where necessary.

Acknowledgements

The original 16-bit MERT file system was designed for the MERT system which was developed in
collaboration with D. L. Bayer. The UNIX 16-bit file system was implemented on the MERT system by
T. M. Raleigh by writing a MERT file manager process. The new MERT 32-bit file system was
debugged and made into arunning system by W. A. Burnette. All versions of the MERT file systems
have benefited from the efforts of T. M. Raleigh and W. A. Burnette. E. A. Loikits provided many of
the dump/restor conversion programs for the various file system formats.

H0-3114-HL-hl H. Lycklama

- 9 -

References

[l] K. Thompson and D. M. Ritchie, The UNIX Time-Sharing System, Comm. ACM 17, (July
1974), p365.

(2) J. F. Maranzano, A Description of the UNIX File System, MF-75-8234-32.

[3] H. Lycklama and D. L. Bayer, The MERT Operating System, TM-78-3114-3.

(4) K. Thompson, private communication.

(5) H. Lycklama, The MERT/UNIX Supervisor, TM-78-3114-4.

(6) H. Lycklama and D. L. Bayer, The MERT Programmer's Manual, October 1977.

\,

- 10 -

APPENDIX A - UNIX 16-bit File System Superblock

#define N _FREEL 100 /* number of free list extents • /
#define N_FINODE 100 /* maximum number of free inodes */
I*
* Definition of the unix super block.
• The root super block is allocated and
• read in iinit/alloc.c. Subsequently
• a super block is allocated and read

· • with each mount (smount/sys3.c) and
• released with unmount (sumount/sys3.c).
* A disk block is ripped off for storage.
• See alloc.c for general alloc/free
• routines for free list and I list.
•1
struct filsys
{ i,

unsigned s_isize; I* size in blocks of I list •1
unsigned s_fsize; /* size in blocks of entire volume */
int s_nfree; I* # of in core free blocks (0-100) */
daddr_t s_free[N_FREEL]; /* in core free blocks */
int s_ninode; /* number of in core I nodes (0-100) */
ino_t s_inode[N_FINODE]; /* in core free I nodes */
char s_flock; I* lock during free list manipulation */
char s_ilock; I* lock during I list manipulation */
char s_fmod; I* super block modified flag */
char s_ronly; /* mounted read-only flag */
long s_time; /* current date of last update */
int pad[40};
int s_tfree; I* total # of free blocks •1
int s_tinode; I* total # of free inodes •1
char s_fname[6]; /* pack name */
char s_fpack[6]; /* pack label *I

};

- 11 -

APPENDIX B - UNIX /6-bit File System On-Disk /node
I*
• Inode structure as it appears on
• the disk. Not used by the system,
• but by things like check, df, dump . . ,
struct vtoc
{

int v_mode;
char v_nlink;
char v_uid;
char v_gid;
char v_size0;
char •v sizel · - ,
daddr_t v_addr[8];
time_t v_atime;
time_t v_mtime;

i,

};

/*modes*/
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

IALLOC
IFMT

ILARG
ISUID
ISGID
ISVTX
IREAD
IWRITE

0100000
060000
IFDIR
IFCHR
IFBLK
IFREC
010000
04000
02000
01000
0400
0200

040000
020000
060000
070000

/* file is used * /
/* type of file * /
/* directory * I
/* character special * I
/* block special, 0 is regular * /
/* record special file * /
/* large addressing algorithm * /
/* set user id on execution * /
f* set group id on execution * /
/* save swapped text even after use * /
/* read, write, execute permissions * /

- 12 -

APPENDIX C - UNIX lb-bit File System In-Core Inode

r
• The I node is the focus of all
• file activity in unix. There is a unique
• inode allocated for each active file,
• each current directory, each mounted-on
• file, text file, and the root. An inode is 'named'
• by its dev/inumber pair. (iget/iget.c)
• Data, from mode on, is read in
• from permanent inode on volume . . ,
struct inode{

char i_flag;
.char i_count; /* reference count */
dev_t i_dev; /* device where inode resides * I
ino_t i_number; /* i number, l-to-I with device address*/

\,

int i_mode;
char i_nlink; /* directory entries * I
char i_uid; r owner*/
char i_gid; /* group of owner * /
char i_size0; /* most significant of size * /
char *i sizel · /* least sig * / - ,
daddr_t i_addr[8]; /* device addresses constituting file * /
char i_use;

};

/*flags*/
#define
#define
#define
#define
#define
#define
#define
#define

ILOCK
IUPD
IACC
!MOUNT
IWANT
1fRUNC
ICRIT
IMOVE

01
02
04
010
020
040
0100
0200

/* inode is locked * I
I* inode has been modified * /
/* inode access time to be updated * /
/* inode is mounted on * /
/* some process waiting on lock * I

/*modes*/
#define IALLOC O 100000
#define IFMT 060000
#define IFDIR
#define IFCHR
#define IFBLK
#define IFREC
#define ILARG 010000
#jefine ISUID 04000
#define ISG ID 02000
#define ISVTX 01000
#define I READ 0400
#define IWRITE 0200
#define IEXEC 0100
extern struct inode inode Il;

040000
020000
060000
070000

r file is used * /
/* type of file * /
/* directory * I
/* character special * /
/* block special, 0 is regular "'/

/* large addressing algorithm "'/
/* set user id on execution * / r set group id on execution * /
/* save swapped text even after use * /
I* read, write, execute permissions * /

- 13 -

APPENDIX D - MERT 16-bit File System Superblock
#define N_FREEL
#define N_FINODE
#define N_UPDATE

struct filsys
{

-.bar
char
struct

64
oJ
30

*s_isize;
*s_fsize;
{
daddr_t

/* number of free list extents • I
/* maximum number of free inodes */
/* maximum number of update entries • /

/* number of blocks of inodes
/* number of blocks in file system

unsigned
} s_ext[N_FREEL];
int s ninode; /* number of free inodes
·int s=inode[N_FJNODE];
int s_nupdate; /* number of update entries filled

{

stblk;
ncblks;

struct

*/
*/

*/ .,

};

daddr_t
unsigned

} s _update[N_UPDATE];
char s_flock;
char s_ilock;
char s_f mod;
char s_ronly;
time_t s_time;

stblk;
nublks;

- 14 -

APPENDIX E - MERT 16-bit File System On-Disk /node

#define N _ VEXT 27 1• number of extents in VTOC entry •t

I*
• Inode format on disk .,
struct vtoc {

int v_mode; /* file mode bits •t
char v_nlink; /* number of links to inode •1
char v_uid; /* uid owner .,
char v_gid; /* gid owner .,
char v_invoc; /* invocation count (uniqueness) .,
char *v_size[2]; /* byte size •t
.struct {

daddr_t stblk; I* # start block # .,
i. unsigned ncblks; /* # of contiguous blocks ·1

} v_ext[N_ VEXT]; /* extents */
time_t v_atime; /* access time */
time_t v_mtime; /* modification time .,
int v_chksm; /* checksum (not used) */

};

I*
• modes
*/
#define IALLOC 0100000 /* inode allocated .,
#define IFMT 070000 /* file format */
#define IFDIR 040000 /* directory .,
#define IFCHR 020000 /* character device */
#define IFBLK 060000 /* block device */
#define IFREC 070000 /* record device *I
#define ICONT 010000 /* contiguous file */
#define ~SUID 04000 I* set user id */
#define ISGID 02000 /* set group id .,
#define IREAD 0400 /* read .,
#define IWRITE 0200 /* write */
#define IEXEC 0100 I* execute */

- 15 -

APPENDIX F - MERT /6-bit File System In-Core /node
I*
• MERT incore inode format .,
struct inode{

char i_flag; /* flags (see below) .,
char i_count; /* number of opens .,
dev_t i_dev; /* device on which file exists•/
ino_t i_number; /* file node number .,
int i_mode; /* file mode bits .,
char i_nlink; /* number of links to inode .,
char i_uid; /* uid owner .,
char i_gid; /* gid owner .,
char i_invoc; /* invocation count (uniqueness) .,
char *i_size[2); /* byte size .,
int i_extent[2]; /* current extent ., i.

int i_stblk; /* block number of first block of extent • /
char i_extno; /* extent number in core */
char i_use; /* inode use count */

};

I*
• flags
*/
#define ILOCK 01 /* inode locked .,
#define IUPD 02 /* update modification timet/
#define IACC 04 /* update access time */
#define IMOUNT 010 /* inode is a mount point * /
#define IW ANT 020 /* inode wanted .,
#define ITRUNC 040 /* truncate inode to new size" I
#define ICRIT 0100 /* critical region .,
#define IMOVE 0200 /* inode being moved .,
I*
• modes .,
#define IALLOC 0100000 /* inode allocated .,
#define IFMT 070000 /* file format */
#define IFDIR 040000 /* directory */
#define IFCHR 020000 /* character device .,
#define IFBLK 060000 /* block device */
#define IFREC 070000 /* record device */
#define ICONT 010000 /* contiguous file */
#define ISUID 04000 /* set user id */
#define ISG ID 02000 /* set group id */
#define IREAD 0400 /* read */
#define !WRITE 0200 /* write */
#define IEXEC 0100 /* execute .,

~-

- 16 -

,,,-·----.._

APPENDIX G - UNIX 32-bit File System Superblock

r
• Definition of the unix super block.
• The root super block is allocated and
• read in iinit/alloc.c. Subsequently
• a super block is allocated and read
• with each mount (smount/sys3.c) and
• released with unmount (sumount/sys3.c).

· • A disk block is ripped off for storage.
• See alloc.c for general alloc/free
• routines for free list and I list.
•1
struct filsys
{

unsigned short s_isize; /* size in blocks of I list * /
daddr_t
short
daddr_t
short
ino_t
char
char
char
char
time_t
short
daddr_t
ino_t
char
char

};

s_fsize; /* size in blocks of entire volume * / i,

s_nfree; /* number of in core free blocks * /
s_free[NICFREE]J* in core free blocks*/
s_ninode; /* number of in core I nodes * /
s_inode[NICINOD];/* in core free I nodes*/
s_flock; /* lock during free list manipulation * /
s_ilock; r lock during I list manipulation * /
s_fmod; /* super block modified flag * /
s_ronly; I* mounted read-only flag * /
s_time; /* current date of last update * /
s_dinfo[4]; /* device information*/
s_tfree; I* Total free, for subsystem examination * I
s tinode; /* Free inodes, for subsystem examination * I
s-fname[6]; /* File system name*/
s)pack[6]; /* File system pack name*/

- 17 -

APPENDIX H - UNIX 32-bit File System On-Disk /node

r
• Inode structure as it appears on
• a disk block. .,
struct dinode
{

short di_mode;
short di_nlink;
short di_uid;
short di_gid;
off_t di_size;
char di_addrl40];
time j di_atime;
time_t di_mtime;
time_t di_ctime;

};

#define INOPB 8 r 8 inodes per block * /

\.

r
• the 40 address bytes:
• 39 used; 13 addresses
• of 3 bytes each.
*/

- 18 -

APPENDIX I - UNIX 32-bit File System In-Core /node

/*
• The I node is the focus of all
• file activity in unix. There is a unique
• inode allocated for each active file,
• each current directory, each mounted-on
• file, text file, and the root. An inode is 'named'
• by its dev/inumber pair. (iget/iget.c)
• Data, from mode on, is read in
• from permanent inode on volume . . ,
#define NADDR 13
struct inode i,
{

char i_flag;
char i_count; /* reference count * I
dev_t i_dev; /* device where inode resides * /
ino_t i_number; I* i number, I-to-I with device address * I
short i_mode;
short i_nlink; /* directory entries * I
short i_uid; /*owner*/
short i_gid; /* group of owner * /
off t i_size; /* size of file * /
union {

struct {

};
struct

daddr_t
daddr_:_t

};
daddr_t

};
J i_un;

extern struct inode inodel];

/* flags*/
#define
#define
#define
#define
#define
#define
#define

/*modes*/
#define
#define
#define
#define
#define
#define
#define
#define

ILOCK
IUPD
IACC
IMOUNT
IWANT
ITEXT
ICRT

IFMT

ISUID
ISGID
ISVTX

01
02
04
010
020
040
0100

0160000
IFDIR
IFCHR
IFBLK
IFREG
04000
02000
01000

/* The inode table itself • /

0040000
0020000
0060000
0100000

i_addr[NADDR]; /* if normal file/dirt
i_lastr; /* last logical block read * /

i_rdev; /* i_addr[0] * I

/* inode is locked * /
/* inode has been modified * /
/* inode access time to be updated * /
/* inode is mounted on * /
/* some process waiting on lock * /
/* inode is pure text prototype "/
/* inode has been created * /

/* type of file • /
/* directory * /
/* character special * /
/* block special * /
/* regular * /
I* set user id on execution * /
I* set group id on execution * I
/* save swapped text even after use * /

- 19 -

#define
#define
#define

IREAD
IWRITE
IEXEC

0400
0200
0100

/* read, write, execute permissions * /

'·

- 20 -

APPENDIX J - MERT 32-bit File System Superb/ock
I*
• Definition of the mert super block.
• The root super block is allocated and
• read in initfsys/task.c. Subsequently
• a super block is allocated and read
• with each mount (smount/f mgr3.c) and
• released with unmount (sumount/fmgr3.c).

· • A disk block is ripped off for storage.
• See alloc.c and bmap.c for general alloc/free
• routines for free list and I list.
·1

#define NICINOD 100 /* number of incore inodes • 1
#define NICFREE 50 /* number of incore free blocks • /

struct filsys
{

unsigned s_isize; /* size in blocks of I list * /
daddr_t s_fsize; /* size in blocks of entire volume * /
unsigned s_nfree; /* number of in core free blocks * /
daddr_t s_free[NICFREE];/* in core free blocks*/
int s_ninode; /* number of in core I nodes * I
ino_t s_inode [NICINOD] ;/* in core free I nodes * /
char s_flock; /* Jock during free list manipulation * /
char s_ilock; /* Jock during I list manipulation * /
char s_fmod; /* super block modified flag * /
char s_ronly; /* mounted read-only flag * /
time_t s_time; r current date of last update * /
daddr_t s_tfree; /* Total free, for subsystem examination * /
ino_t s_tinode; /* Free inodes, for subsystem examination * /
int s m· /* interleave factor * / - ' int s n· I*"*/ - ' char s_fname[6]; /* File system name * /
char s_fpack[6]; /* File system pack name * /
daddr_t s_cfree; /* Free blocks on chain * /
daddr_t s_nxtblk; /* Next free block not on chain * /
daddr_t s_nxtcon; /* Next available contiguous area * I

};

#define NHWAT 500
#define NLWAT 50

- 21 -

APPENDIX K - MER T 32-bit File System On-Disk lnode
I*
• Inode structure as it appears on
• a disk block . . ,
struct dinode
{

int di_mode;
int di_nlink;
int di_uid;
int di_gid;
off_t di_size;
char di_addr[40];
time_t di_atime;
time_t di_mtime;
time_t di_ctime;

};

#define INOPB 8 /* 8 inodes per block * /

i.

I*
• the 40 address bytes:
• 39 used; 13 addresses
* of 3 bytes each.
*/

- 22 -

APPENDIX L - MERT 32-bitFile System In-Core /node

/*
• The I node is the focus of all
• file activity in mert. There is a unique
• inode allocated for each active file,
• each current directory, each mounted-on
• file and the root. An inode is 'named'
• by its dev/inumber pair. (iget/iget.c)
• Data, from mode on, is read in
• from permanent inode on volume.
•1

#define NADDR 13
#define N_VEXT 6 \.

struct inode
{

char i_flag;
char i_count; /* reference count * /
dev_t i_dev; /* device where inode resides * /
ino_t i_number; /* i number, I-to-I with device address*/
int i_mode;
int i_nlink; /* directory entries * /
int i_uid; /*owner*/
int i_gid; /* group of owner * /
off_t i_size; /* size of file * /
daddr_t i_addr[NADDR]; /* if normal file/ directory * /
char i_invoc; /* invocation count * I
char i_use; /* inode usage count * /

/*
• struct def''n for files allocated by extents
*/

struct i_extent {
daddr_t
daddr_t

};

/* flags */
#define
#define
#define
#define
#define
#define
#define
#define

ILOCK
IUPD
IACC
!MOUNT
IWANT
ITRUNC
ICRT
ICRIT

/*modes*/
#define IFMT
#define
#define
#define
#define

stblk;
ncblks;

01
02
04
010
020
040
0100
0200

0170000
IFDlR
IFCHR
lFBLK
IFREG

0040000
0020000
0060000
0100000

/* inode is locked * /
/* inode has been modified * /
/* inode access time to be updated * /
/* inode is mounted on * /
/* some process waiting on lock * /
/* inode to be trunc. to proper length * /
/* inode has been created * /
/* critical section * /

/* type of file * /
/* directory * /
/* character special * /
/* block special * /
/* regular * /

- ·i

- 23 -

#define
#define
#define
#define
#define
#define
+/define
#define

ISUID
ISGID
IREAD
IWRITE
IEXEC

IFREC
IFEXT
IFIXT
04000
02000
0400
0200
0100

0160000
0120000
0130000

/* record */
/* allocated by multiple contiguous extents * I
/* contiguous file of 1 extent * I
I* set user id on execution * I
I* set group id on execution * /
/* read, write, execute permissions * I

\.

