rfc792 (2 of 3)

ron at brl-adm.UUCP ron at brl-adm.UUCP
Wed May 14 14:00:08 AEST 1986



September 1981                                                          
RFC 792



      discards a datagram, it may send a source quench message to the
      internet source host of the datagram.  A destination host may also
      send a source quench message if datagrams arrive too fast to be
      processed.  The source quench message is a request to the host to
      cut back the rate at which it is sending traffic to the internet
      destination.  The gateway may send a source quench message for
      every message that it discards.  On receipt of a source quench
      message, the source host should cut back the rate at which it is
      sending traffic to the specified destination until it no longer
      receives source quench messages from the gateway.  The source host
      can then gradually increase the rate at which it sends traffic to
      the destination until it again receives source quench messages.

      The gateway or host may send the source quench message when it
      approaches its capacity limit rather than waiting until the
      capacity is exceeded.  This means that the data datagram which
      triggered the source quench message may be delivered.

      Code 0 may be received from a gateway or a host.































                                                               [Page 11]


                                                          September 1981
RFC 792



Redirect Message

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Code      |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Gateway Internet Address                      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |      Internet Header + 64 bits of Original Data Datagram      |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   IP Fields:

   Destination Address

      The source network and address of the original datagram's data.

   ICMP Fields:

   Type

      5

   Code

      0 = Redirect datagrams for the Network.

      1 = Redirect datagrams for the Host.

      2 = Redirect datagrams for the Type of Service and Network.

      3 = Redirect datagrams for the Type of Service and Host.

   Checksum

      The checksum is the 16-bit ones's complement of the one's
      complement sum of the ICMP message starting with the ICMP Type.
      For computing the checksum , the checksum field should be zero.
      This checksum may be replaced in the future.

   Gateway Internet Address

      Address of the gateway to which traffic for the network specified
      in the internet destination network field of the original
      datagram's data should be sent.




[Page 12]                                                               


September 1981                                                          
RFC 792



   Internet Header + 64 bits of Data Datagram

      The internet header plus the first 64 bits of the original
      datagram's data.  This data is used by the host to match the
      message to the appropriate process.  If a higher level protocol
      uses port numbers, they are assumed to be in the first 64 data
      bits of the original datagram's data.

   Description

      The gateway sends a redirect message to a host in the following
      situation.  A gateway, G1, receives an internet datagram from a
      host on a network to which the gateway is attached.  The gateway,
      G1, checks its routing table and obtains the address of the next
      gateway, G2, on the route to the datagram's internet destination
      network, X.  If G2 and the host identified by the internet source
      address of the datagram are on the same network, a redirect
      message is sent to the host.  The redirect message advises the
      host to send its traffic for network X directly to gateway G2 as
      this is a shorter path to the destination.  The gateway forwards
      the original datagram's data to its internet destination.

      For datagrams with the IP source route options and the gateway
      address in the destination address field, a redirect message is
      not sent even if there is a better route to the ultimate
      destination than the next address in the source route.

      Codes 0, 1, 2, and 3 may be received from a gateway.






















                                                               [Page 13]


                                                          September 1981
RFC 792



Echo or Echo Reply Message

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |     Code      |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Identifier          |        Sequence Number        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Data ...
   +-+-+-+-+-

   IP Fields:

   Addresses

      The address of the source in an echo message will be the
      destination of the echo reply message.  To form an echo reply
      message, the source and destination addresses are simply reversed,
      the type code changed to 0, and the checksum recomputed.

   IP Fields:

   Type

      8 for echo message;

      0 for echo reply message.

   Code

      0

   Checksum

      The checksum is the 16-bit ones's complement of the one's
      complement sum of the ICMP message starting with the ICMP Type.
      For computing the checksum , the checksum field should be zero.
      If the total length is odd, the received data is padded with one
      octet of zeros for computing the checksum.  This checksum may be
      replaced in the future.

   Identifier

      If code = 0, an identifier to aid in matching echos and replies,
      may be zero.

   Sequence Number


[Page 14]                                                               


September 1981                                                          
RFC 792



      If code = 0, a sequence number to aid in matching echos and
      replies, may be zero.

   Description

      The data received in the echo message must be returned in the echo
      reply message.

      The identifier and sequence number may be used by the echo sender
      to aid in matching the replies with the echo requests.  For
      example, the identifier might be used like a port in TCP or UDP to
      identify a session, and the sequence number might be incremented
      on each echo request sent.  The echoer returns these same values
      in the echo reply.

      Code 0 may be received from a gateway or a host.


































                                                               [Page 15]


                                                          September 1981
RFC 792



Timestamp or Timestamp Reply Message

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |      Code     |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Identifier          |        Sequence Number        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Originate Timestamp                                       |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Receive Timestamp                                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Transmit Timestamp                                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   IP Fields:

   Addresses

      The address of the source in a timestamp message will be the
      destination of the timestamp reply message.  To form a timestamp
      reply message, the source and destination addresses are simply
      reversed, the type code changed to 14, and the checksum
      recomputed.

   IP Fields:

   Type

      13 for timestamp message;

      14 for timestamp reply message.

   Code

      0

   Checksum

      The checksum is the 16-bit ones's complement of the one's
      complement sum of the ICMP message starting with the ICMP Type.
      For computing the checksum , the checksum field should be zero.
      This checksum may be replaced in the future.

   Identifier




[Page 16]                                                               


September 1981                                                          
RFC 792



      If code = 0, an identifier to aid in matching timestamp and
      replies, may be zero.

   Sequence Number

      If code = 0, a sequence number to aid in matching timestamp and
      replies, may be zero.

   Description

      The data received (a timestamp) in the message is returned in the
      reply together with an additional timestamp.  The timestamp is 32
      bits of milliseconds since midnight UT.  One use of these
      timestamps is described by Mills [5].

      The Originate Timestamp is the time the sender last touched the
      message before sending it, the Receive Timestamp is the time the
      echoer first touched it on receipt, and the Transmit Timestamp is
      the time the echoer last touched the message on sending it.

      If the time is not available in miliseconds or cannot be provided
      with respect to midnight UT then any time can be inserted in a
      timestamp provided the high order bit of the timestamp is also set
      to indicate this non-standard value.

      The identifier and sequence number may be used by the echo sender
      to aid in matching the replies with the requests.  For example,
      the identifier might be used like a port in TCP or UDP to identify
      a session, and the sequence number might be incremented on each
      request sent.  The destination returns these same values in the
      reply.

      Code 0 may be received from a gateway or a host.

















                                                               [Page 17]


                                                          September 1981
RFC 792



Information Request or Information Reply Message

    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |     Type      |      Code     |          Checksum             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |           Identifier          |        Sequence Number        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   IP Fields:

   Addresses

      The address of the source in a information request message will be
      the destination of the information reply message.  To form a
      information reply message, the source and destination addresses
      are simply reversed, the type code changed to 16, and the checksum
      recomputed.

   IP Fields:

   Type

      15 for information request message;

      16 for information reply message.

   Code

      0

   Checksum

      The checksum is the 16-bit ones's complement of the one's
      complement sum of the ICMP message starting with the ICMP Type.
      For computing the checksum , the checksum field should be zero.
      This checksum may be replaced in the future.

   Identifier

      If code = 0, an identifier to aid in matching request and replies,
      may be zero.

   Sequence Number

      If code = 0, a sequence number to aid in matching request and
      replies, may be zero.


[Page 18]                                                               


September 1981                                                          
RFC 792



   Description

      This message may be sent with the source network in the IP header
      source and destination address fields zero (which means "this"
      network).  The replying IP module should send the reply with the
      addresses fully specified.  This message is a way for a host to
      find out the number of the network it is on.

      The identifier and sequence number may be used by the echo sender
      to aid in matching the replies with the requests.  For example,
      the identifier might be used like a port in TCP or UDP to identify
      a session, and the sequence number might be incremented on each
      request sent.  The destination returns these same values in the
      reply.

      Code 0 may be received from a gateway or a host.


































                                                               [Page 19]


                                                          September 1981
RFC 792



Summary of Message Types

    0  Echo Reply

    3  Destination Unreachable

    4  Source Quench

    5  Redirect

    8  Echo

   11  Time Exceeded

   12  Parameter Problem

   13  Timestamp

   14  Timestamp Reply

   15  Information Request

   16  Information Reply



























[Page 20]                                                               




More information about the Mod.sources.doc mailing list