rfc821 (5 of 8)

ron at brl-adm.UUCP ron at brl-adm.UUCP
Mon May 19 14:00:17 AEST 1986



                                                                        
RFC 821                                                      August 1982
                                           Simple Mail Transfer Protocol



   4.3.  SEQUENCING OF COMMANDS AND REPLIES

      The communication between the sender and receiver is intended to
      be an alternating dialogue, controlled by the sender.  As such,
      the sender issues a command and the receiver responds with a
      reply.  The sender must wait for this response before sending
      further commands.

      One important reply is the connection greeting.  Normally, a
      receiver will send a 220 "Service ready" reply when the connection
      is completed.  The sender should wait for this greeting message
      before sending any commands.

         Note: all the greeting type replies have the official name of
         the server host as the first word following the reply code.

            For example,

               220 <SP> USC-ISIF.ARPA <SP> Service ready <CRLF>

      The table below lists alternative success and failure replies for
      each command.  These must be strictly adhered to; a receiver may
      substitute text in the replies, but the meaning and action implied
      by the code numbers and by the specific command reply sequence
      cannot be altered.

      COMMAND-REPLY SEQUENCES

         Each command is listed with its possible replies.  The prefixes
         used before the possible replies are "P" for preliminary (not
         used in SMTP), "I" for intermediate, "S" for success, "F" for
         failure, and "E" for error.  The 421 reply (service not
         available, closing transmission channel) may be given to any
         command if the SMTP-receiver knows it must shut down.  This
         listing forms the basis for the State Diagrams in Section 4.4.

            CONNECTION ESTABLISHMENT
               S: 220
               F: 421
            HELO
               S: 250
               E: 500, 501, 504, 421
            MAIL
               S: 250
               F: 552, 451, 452
               E: 500, 501, 421



Postel                                                         [Page 37]


                                                                        
August 1982                                                      RFC 821
Simple Mail Transfer Protocol                                           



            RCPT
               S: 250, 251
               F: 550, 551, 552, 553, 450, 451, 452
               E: 500, 501, 503, 421
            DATA
               I: 354 -> data -> S: 250
                                 F: 552, 554, 451, 452
               F: 451, 554
               E: 500, 501, 503, 421
            RSET
               S: 250
               E: 500, 501, 504, 421
            SEND
               S: 250
               F: 552, 451, 452
               E: 500, 501, 502, 421
            SOML
               S: 250
               F: 552, 451, 452
               E: 500, 501, 502, 421
            SAML
               S: 250
               F: 552, 451, 452
               E: 500, 501, 502, 421
            VRFY
               S: 250, 251
               F: 550, 551, 553
               E: 500, 501, 502, 504, 421
            EXPN
               S: 250
               F: 550
               E: 500, 501, 502, 504, 421
            HELP
               S: 211, 214
               E: 500, 501, 502, 504, 421
            NOOP
               S: 250
               E: 500, 421
            QUIT
               S: 221
               E: 500
            TURN
               S: 250
               F: 502
               E: 500, 503




[Page 38]                                                         Postel


                                                                        
RFC 821                                                      August 1982
                                           Simple Mail Transfer Protocol



   4.4.  STATE DIAGRAMS

      Following are state diagrams for a simple-minded SMTP
      implementation.  Only the first digit of the reply codes is used.
      There is one state diagram for each group of SMTP commands.  The
      command groupings were determined by constructing a model for each
      command and then collecting together the commands with
      structurally identical models.

      For each command there are three possible outcomes:  "success"
      (S), "failure" (F), and "error" (E). In the state diagrams below
      we use the symbol B for "begin", and the symbol W for "wait for
      reply".

      First, the diagram that represents most of the SMTP commands:

         
                                  1,3    +---+
                             ----------->| E |
                            |            +---+
                            |
         +---+    cmd    +---+    2      +---+
         | B |---------->| W |---------->| S |
         +---+           +---+           +---+
                            |
                            |     4,5    +---+
                             ----------->| F |
                                         +---+
         

         This diagram models the commands:

            HELO, MAIL, RCPT, RSET, SEND, SOML, SAML, VRFY, EXPN, HELP,
            NOOP, QUIT, TURN.















Postel                                                         [Page 39]


                                                                        
August 1982                                                      RFC 821
Simple Mail Transfer Protocol                                           



      A more complex diagram models the DATA command:

         
         +---+   DATA    +---+ 1,2                 +---+
         | B |---------->| W |-------------------->| E |
         +---+           +---+        ------------>+---+
                         3| |4,5     |
                          | |        |
            --------------   -----   |
           |                      |  |             +---+
           |               ----------     -------->| S |
           |              |       |      |         +---+
           |              |  ------------
           |              | |     |
           V           1,3| |2    |
         +---+   data    +---+     --------------->+---+
         |   |---------->| W |                     | F |
         +---+           +---+-------------------->+---+
                              4,5


         Note that the "data" here is a series of lines sent from the
         sender to the receiver with no response expected until the last
         line is sent.

























[Page 40]                                                         Postel


                                                                        
RFC 821                                                      August 1982
                                           Simple Mail Transfer Protocol



   4.5.  DETAILS

      4.5.1.  MINIMUM IMPLEMENTATION

         In order to make SMTP workable, the following minimum
         implementation is required for all receivers:

            COMMANDS -- HELO
                        MAIL
                        RCPT
                        DATA
                        RSET
                        NOOP
                        QUIT

      4.5.2.  TRANSPARENCY

         Without some provision for data transparency the character
         sequence "<CRLF>.<CRLF>" ends the mail text and cannot be sent
         by the user.  In general, users are not aware of such
         "forbidden" sequences.  To allow all user composed text to be
         transmitted transparently the following procedures are used.

            1. Before sending a line of mail text the sender-SMTP checks
            the first character of the line.  If it is a period, one
            additional period is inserted at the beginning of the line.

            2. When a line of mail text is received by the receiver-SMTP
            it checks the line.  If the line is composed of a single
            period it is the end of mail.  If the first character is a
            period and there are other characters on the line, the first
            character is deleted.

         The mail data may contain any of the 128 ASCII characters.  All
         characters are to be delivered to the recipient's mailbox
         including format effectors and other control characters.  If
         the transmission channel provides an 8-bit byte (octets) data
         stream, the 7-bit ASCII codes are transmitted right justified
         in the octets with the high order bits cleared to zero.

            In some systems it may be necessary to transform the data as
            it is received and stored.  This may be necessary for hosts
            that use a different character set than ASCII as their local
            character set, or that store data in records rather than





Postel                                                         [Page 41]


                                                                        
August 1982                                                      RFC 821
Simple Mail Transfer Protocol                                           



            strings.  If such transforms are necessary, they must be
            reversible -- especially if such transforms are applied to
            mail being relayed.

      4.5.3.  SIZES

         There are several objects that have required minimum maximum
         sizes.  That is, every implementation must be able to receive
         objects of at least these sizes, but must not send objects
         larger than these sizes.

                                    
          ****************************************************
          *                                                  *
          *  TO THE MAXIMUM EXTENT POSSIBLE, IMPLEMENTATION  *
          *  TECHNIQUES WHICH IMPOSE NO LIMITS ON THE LENGTH *
          *  OF THESE OBJECTS SHOULD BE USED.                *
          *                                                  *
          ****************************************************

            user

               The maximum total length of a user name is 64 characters.

            domain

               The maximum total length of a domain name or number is 64
               characters.

            path

               The maximum total length of a reverse-path or
               forward-path is 256 characters (including the punctuation
               and element separators).

            command line

               The maximum total length of a command line including the
               command word and the <CRLF> is 512 characters.

            reply line

               The maximum total length of a reply line including the
               reply code and the <CRLF> is 512 characters.





[Page 42]                                                         Postel


                                                                        
RFC 821                                                      August 1982
                                           Simple Mail Transfer Protocol



            text line

               The maximum total length of a text line including the
               <CRLF> is 1000 characters (but not counting the leading
               dot duplicated for transparency).

            recipients buffer

               The maximum total number of recipients that must be
               buffered is 100 recipients.

                                    
          ****************************************************
          *                                                  *
          *  TO THE MAXIMUM EXTENT POSSIBLE, IMPLEMENTATION  *
          *  TECHNIQUES WHICH IMPOSE NO LIMITS ON THE LENGTH *
          *  OF THESE OBJECTS SHOULD BE USED.                *
          *                                                  *
          ****************************************************

         Errors due to exceeding these limits may be reported by using
         the reply codes, for example:

            500 Line too long.

            501 Path too long

            552 Too many recipients.

            552 Too much mail data.



















Postel                                                         [Page 43]


                                                                        
August 1982                                                      RFC 821
Simple Mail Transfer Protocol                                           



APPENDIX A

   TCP Transport service

      The Transmission Control Protocol [3] is used in the ARPA
      Internet, and in any network following the US DoD standards for
      internetwork protocols.

      Connection Establishment

         The SMTP transmission channel is a TCP connection established
         between the sender process port U and the receiver process port
         L.  This single full duplex connection is used as the
         transmission channel.  This protocol is assigned the service
         port 25 (31 octal), that is L=25.

      Data Transfer

         The TCP connection supports the transmission of 8-bit bytes.
         The SMTP data is 7-bit ASCII characters.  Each character is
         transmitted as an 8-bit byte with the high-order bit cleared to
         zero.



























[Page 44]                                                         Postel


                                                                        
RFC 821                                                      August 1982
                                           Simple Mail Transfer Protocol



APPENDIX B

   NCP Transport service

      The ARPANET Host-to-Host Protocol [4] (implemented by the Network
      Control Program) may be used in the ARPANET.

      Connection Establishment

         The SMTP transmission channel is established via NCP between
         the sender process socket U and receiver process socket L.  The
         Initial Connection Protocol [5] is followed resulting in a pair
         of simplex connections.  This pair of connections is used as
         the transmission channel.  This protocol is assigned the
         contact socket 25 (31 octal), that is L=25.

      Data Transfer

         The NCP data connections are established in 8-bit byte mode.
         The SMTP data is 7-bit ASCII characters.  Each character is
         transmitted as an 8-bit byte with the high-order bit cleared to
         zero.



























Postel                                                         [Page 45]


                                                                        
August 1982                                                      RFC 821
Simple Mail Transfer Protocol                                           



APPENDIX C

   NITS

      The Network Independent Transport Service [6] may be used.

      Connection Establishment

         The SMTP transmission channel is established via NITS between
         the sender process and receiver process.  The sender process
         executes the CONNECT primitive, and the waiting receiver
         process executes the ACCEPT primitive.

      Data Transfer

         The NITS connection supports the transmission of 8-bit bytes.
         The SMTP data is 7-bit ASCII characters.  Each character is
         transmitted as an 8-bit byte with the high-order bit cleared to
         zero.






























[Page 46]                                                         Postel




More information about the Mod.sources.doc mailing list